Archive for the 'Biofuels' Category

2017 BioenergizeME Infographic Challenge from the U.S. Department of Energy

The 2017 BioenergizeME Infographic Challenge kicks off today!  This year’s theme is  Exploring the Future American Energy Landscape.  The US Department of Energy’s Bioenergies Technologies Office is  asking 9th- through 12th-grade student teams to use technology to research, interpret, apply, and then design an infographic that responds to one of five research topic areas selected for 2017:

History of Modern Bioenergy
Sustainability

Bioenergy and Society
Workforce and Education

Science and Technology

Even better, all of the tools necessary to integrate this challenge into your curriculum or offer it as an after-school activity are provided!

BioenergizeME Toolkit

Five steps to building an infographic

Social media guide

BioenergizeME Research Strategy Guide

BioenergizeME Resource Library

To date no past submissions have come from NC – let’s change this!

To be considered for the competition, teams must register by Feb. 3, 2017 and infographics must be submitted by March 3, 2017.

Check out the 2016 award winning infographics on cellulosic ethanol, algae as a biofuel and energy from biomass You can view all previous winning infographics here. One NC teacher remarked that she would incorporate these  infographics into her AP Environmental Science class by having her students review and critique the infographics to decide which they would fund for further development.

Advertisements

U.S. Department of Energy BioenergizeME Infographic Challenge

FirstPlaceI recently learned about the U.S. Department of Energy BioenergizeME Infographic Challenge when they announced their 2016 Infographic challenge theme: Exploring the Future American Energy Landscape.  They are asking 9th- through 12th-grade student teams to use technology to research, interpret, apply, and then design an infographic that responds to one of four cross-curricular bioenergy topics:

Bioenergy History
Workforce and Education

Science and Technology
Environmental Impacts

Even better, the Energy Department and the Library of Congress have provided all of the tools necessary to integrate this challenge into your curriculum or offer it as an after-school activity!

BioenergizeME Toolkit

BioenergizeME Research Strategy Guide

BioenergizeME Resource Library

To be considered for the competition, infographics must be submitted by March 4, 2016.

Check out the 2015 winning infographics on cellulosic ethanol (see above), algae and algae biofuel. One NC teacher is already planning to incorporate these winning infographics into her AP Environmental Science class by having her students review and critique the infographics to decide which of the three they would fund for further development.

 

Energy, Water and Land: National Climate Assessment

The National Climate Assessment “provides an in-depth look at climate change impacts on the U.S. It details the multitude of ways climate change is already affecting and will increasingly affect the lives of Americans.”  Chapter 10 of the report is devoted to exploring the connections between energy, water and land as understanding these connections “can improve our capacity to predict, prepare for, and mitigate climate change.”

The report is organized around three key messages:
1. Energy, water, and land systems interact in many ways. Climate change affects the individual sectors and their interactions; the combination of these factors affects climate change vulnerability as well as adaptation and mitigation options for different regions of the country.
2. The dependence of energy systems on land and water supplies will influence the development of these systems and options for reducing greenhouse gas emissions, as well as their climate change vulnerability.
3. Jointly considering risks, vulnerabilities, and opportunities associated with energy, water, and land use is challenging, but can improve the identification and evaluation of options for reducing climate change impacts.

Each chapter of the report includes interactive graphics as well as figures and graphics that can be downloaded for use in the classroom.  Check out the interactive version of Figure 10.4 that shows the energy production by source, amount of water withdrawn by key sectors and land cover type for each region of the US along with projected climate change impacts. This figure provides an at-a-glance view of water, energy and land use that can be used by students as they consider how projected climate impacts might influence each of these sectors in their region.

The report also includes examples of energy, water and land connections by exploring the following technologies and the corresponding energy-water-land tradeoffs in more depth:

  • shale gas and hydraulic fracturing
  • solar power generation
  • biofuels
  • carbon capture and storage

So the next time you ask students to critically evaluate the various energy sources used by society, encourage them to also consider the role of water and land in the mining and acquisition of energy sources, the generation of electricity, and the manufacture and delivery of transportation fuels.

 

 

“Algae”, biofuels and carbon capture

Photo credit: NREL

I was excited to see cyanobacteria (blue-green algae) featured in a recent energy-related article in the News and Observer.  Asheville entrepreneur aims to harness cyanobacteria’s photosynthetic prowess details the work of Phytonix, an Asheville-based company that has  engineered cyanobacteria to use carbon dioxide and sunlight to produce n-butanol instead of sugar! According to the article, “current methods of producing butanol use petroleum as a feedstock and emit carbon dioxide in the process. Because the Phytonix approach uses carbon dioxide as a feedstock, it removes carbon dioxide from the atmosphere.”

Thus, in addition to producing biofuels, these microscopic photosynthetic organisms also serve to capture carbon from the atmosphere or other concentrated source. The scientist behind Phytonix, Bruce Dannenberg, is said to envision his “facilities being located near sources of carbon dioxide, such as ethanol refineries, oil and gas production plants, cement factories or breweries.” And power companies like Duke Energy are also turning to photosynthesis  and exploring technologies to capture CO2 from the flue gas of coal-fired power plants. 

There is an algae-based system for CO2 capture at Duke Energy’s East Bend Power Plant (a coal-fired power plant) located in Kentucky along the Ohio River. This project is a collaboration between the University of Kentucky Center for Applied Energy Research and the University of Kentucky Department of Biosystems and Agriculture Engineering.  According to Duke Energy, “while the primary focus of the project is to demonstrate how to use algae to reduce CO2 emissions produced by coal-fired power plants, the project also focuses upon studying the production of biofuels and other bioproducts from the algae to demonstrate the economic feasibility of using algae to capture CO2.”  

A two part video about algae CO2 capture and this Duke Energy project was produced by the University of Kentucky Center for Applied Energy Research and Reveal: University of Kentucky Research Media:

Algae CO2 Capture Part 1: How it Works (5 minutes)

Algae CO2 Capture Part 2: Imagining the Future (5 minutes)

A Photo Gallery is also available.

Here is some additional reading related to Duke Energy’s East Bend Power Plant photobioreactor:

CO2 recycling using microalgae for the production of fuels, March 2014
This article from the journal Applied Petrochemical Research describes the demonstration project at Duke Energy’s East Bend Power Plant.

Duke, UK use algae to eat CO2 and make new stuff, Nov 8, 2013
This article is not available in full but this link includes access to a 1 minute video titled “Algae Eat Emissions at East Bend Power Plant.”

CAER Scientists, Duke Energy Demonstrate Algae-Based Carbon-Capture System, Nov 2013
This article is from University of Kentucky News.

Ky. power station to implement algae carbon capture project, Dec 2011
This article is from Biodiesel Magazine.

 

 

 

 

 

eBook – Our choice: A Plan to Solve the Climate Crisis

Our choice: A Plan to Solve the Climate Crisis is one eBook that comes highly recommended by a few teachers I know and it was also picked as a Best App or website  for Teaching & Learning 2013 by the American Association of School Librarians. This interactive eBook includes photography, interactive graphics, animations, and more than an hour of documentary footage. In 2011 it won the Apple Design Award for its “groundbreaking interface.” This eBook includes 18 chapters, including chapters on solar and wind energy, geothermal, biofuels, the smart grid, carbon capture and sequestration and nuclear energy! You can purchase this app from iTunes for $4.99.

If you use this resource with your students, I’d love to hear from you!

Carbon Stabilization Wedge Game

This small group activity was developed by the Carbon Mitigation Initiative at Princeton Universityto convey the scale of effort needed to address the carbon and climate situation and the necessity of developing a portfolio of options.” By the end of the exercise, students should understand the magnitude of human-sourced carbon emissions and feel comfortable comparing the effectiveness, benefits, and drawbacks of a variety of carbon-cutting strategies including nuclear power. The students should appreciate that there is no easy or “right” solution to the carbon and climate problem.  Students will learn about the technologies currently available that can substantially cut carbon emissions, develop critical reasoning skills as they create their own portfolio of strategies to cut emissions, and verbally communicate the rationale for their selections. Working in teams, students will develop the skills to negotiate a solution that is both physically plausible and politically acceptable, and defend their solution to a larger group.”  Accompanying Slides and Graphics are available for download as well.

This game and its creator was also highlighted in chapter 2 of the recent NOVA special, Power Surge which can be viewed online in under 13 minutes.

Energy Source Comparisons from EnergyLiteracy.org

EnergyLiteracy.org is the website for Energy Literacy Advocates (ELA), a non-partisan, non-profit, public education organization “working to improve the energy literacy of all sectors of our democracy.”  This website provides, in an easy to read format, a summary of each energy source including information about the pros and cons of each source, facts and figures about each source, and a description of key barriers to implementation where appropriate.  In addition, a color coded scale is utilized to enable someone to evaluate the following features of each: Cost of Increased Use, Environmental Impact, National Security, Implementation, and Political Toxicity.

A useful activity for students would be to have them combine the ratings for each energy source into one, easy to read table.  This could then be used as a basis for further class discussion.



%d bloggers like this: